Protein-lipid interactions with Fusobacterium nucleatum major outer membrane protein FomA: spin-label EPR and polarized infrared spectroscopy.
نویسندگان
چکیده
FomA, the major outer membrane protein of Fusobacterium nucleatum, was expressed and purified in Escherichia coli and reconstituted from detergent in bilayer membranes of phosphatidylcholines with chain lengths from C(12:0) to C(17:0). The conformation and orientation of membrane-incorporated FomA were determined from polarized, attenuated total reflection, infrared (IR) spectroscopy, and lipid-protein interactions with FomA were characterized by using electron paramagnetic resonance (EPR) spectroscopy of spin-labeled lipids. Approximately 190 residues of membranous FomA are estimated to be in a beta-sheet configuration from IR band fitting, which is consistent with a 14-strand transmembrane beta-barrel structure. IR dichroism of FomA indicates that the beta-strands are tilted by approximately 45 degrees relative to the sheet/barrel axis and that the order parameter of the latter displays a discontinuity corresponding to hydrophobic matching with fluid C(13:0) lipid chains. The stoichiometry ( N b = 23 lipids/monomer) of lipid-protein interaction from EPR demonstrates that FomA is not trimeric in membranes of diC(14:0) phosphatidylcholine and is consistent with a monomeric beta-barrel of 14-16 strands. The pronounced selectivity of interaction found with anionic spin-labeled lipids places basic residues of the protein in the vicinity of the polar-apolar membrane interfaces, consistent with current topology models. Comparison with similar data from the 8- to 22-stranded E. coli outer membrane proteins, OmpA, OmpG, and FhuA, supports the above conclusions.
منابع مشابه
The major outer membrane protein of Fusobacterium nucleatum (FomA) folds and inserts into lipid bilayers via parallel folding pathways.
Membrane protein insertion and folding was studied for the major outer membrane protein of Fusobacterium nucleatum (FomA), which is a voltage-dependent general diffusion porin. The transmembrane domain of FomA forms a beta-barrel that is predicted to consist of 14 beta-strands. Here, unfolded FomA is shown to insert and fold spontaneously and quantitatively into phospholipid bilayers upon dilut...
متن کاملAmphipathic polymers: tools to fold integral membrane proteins to their active form.
Among the major obstacles to pharmacological and structural studies of integral membrane proteins (MPs) are their natural scarcity and the difficulty in overproducing them in their native form. MPs can be overexpressed in the non-native state as inclusion bodies, but inducing them to achieve their functional three-dimensional structure has proven to be a major challenge. We describe here the us...
متن کاملFusobacterium nucleatum envelope protein FomA is immunogenic and binds to the salivary statherin-derived peptide.
We have previously shown that one of the minimal active regions of statherin, a human salivary protein, for binding to Fusobacterium nucleatum is a YQPVPE amino acid sequence. In this study, we identified the FomA protein of F. nucleatum, which is responsible for binding to the statherin-derived YQPVPE peptide. Overlay analysis showed that a 40-kDa protein of the F. nucleatum cell envelope (40-...
متن کاملThe Trimeric Periplasmic Chaperone Skp of Escherichia coli Forms 1:1 Complexes with Outer Membrane Proteins via Hydrophobic and Electostatic Interactions
*Corresponding author. E-mail addr Abbreviations used: BSA, bovine hVDAC1, voltage-dependent aniondomain of the autotransporter NalP OmpA, outer membrane protein A o isomerases; SurA, the survival factor WT-OmpA, wild type OmpA; YaeT The interactions of outer membrane proteins (OMPs) with the periplasmic chaperone Skp from Escherichia coli are not well understood. We have examined the binding o...
متن کاملIncorporation of outer membrane protein OmpG in lipid membranes: protein-lipid interactions and beta-barrel orientation.
OmpG is an intermediate size, monomeric, outer membrane protein from Escherichia coli, with n beta = 14 beta-strands. It has a large pore that is amenable to modification by protein engineering. The stoichiometry ( N b = 20) and selectivity ( K r = 0.7-1.2) of lipid-protein interaction with OmpG incorporated in dimyristoyl phosphatidylcholine bilayer membranes was determined with various 14-pos...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemistry
دوره 47 32 شماره
صفحات -
تاریخ انتشار 2008